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Képka and Chovanec have defined the concept of a D-poset, a partially ordered
set with a partial operation © with properties analogous to subtraction on the
real line. In this paper we study similar structures, but we do not assume a partial
order relation or the existence of distinguished elements 0, 1. We call each such
structure a D-set and show that if a certain condition is satisfied, a D-set becomes
the union of Abelian groups.

INTRODUCTION

Definition 1.1. Let L be nonempty set and © be a partial binary operation
on L. Then the set L will be called a difference set (DS) if the following
conditions are fulfilled:

(d1)
(d2)

(d3)

Foranya € L,a© a L and we will denote a © a = Q.
Ifa, b,a©b e L, thena © (a © b) € L and moreover a ©
(a©b)=b.

Ifa b,c,a® b, bSO ¢ € L, then a © ¢ € L and moreover
@) @O b =bOec.

In the following lemma we deduce the basic properties of a DS. Similar
properties were proved for difference posets in Kopka and Chovanec (1994).

Lemma 1.1. Let L be a DS; then:

(1)
2)
3)
C))

Foranya e L,a© 0, e Landa © 0, = a.
IfcSael,then0, =0, = 0.,

Ifc©Qa=d thenc©d=a.

fcOb(cOb)QacL thenc©a (c©a)Ob e L and
cOb)Oa=(Oa)Ob.

! Katedra Matematiky a Deskriptivnej Geomerie, Stavebnd Fakulta, Slovenska Technickd Uni-
verzita, 813 63 Bratislava, Slovakia. E-mail: nanasio@cvt.stuba.sk.

1637

(4020-7748/95/0800-1637307.50/0 © 1995 Plenum Publishing Corporation



1638 Nandsiova

Proof. (hIfae L,ithena©aelanda=a© @Sa)=aS0,
eL.Soa®© 0, =a

DIfcOaeclthen(c©a)©(cBa)e Land g, = (c O a) O
(c©a)=a®a =0, On the other hand, c © a, ¢ © ¢ € L. Then (c ©
80, =cCaC(cCc)=cOaandl, = (S a)S(cOa) =
cCaS[ccaye0] =0,

BRlfcBaelandcOa=dthena=cO O a)=cOd So

=cQd.

DHHEcOb(cOb)SacLthenb=cO©(cOband (cO b O
a,cO (b el SowehavecOaeLand(c O a)Cb=(cOa)O
[cSCcOh]=(Ch)Oa =

Definition 1.2. Let L be a DS. The set L will be called a group difference
set (GDS) if the following condition is satisfied:

(d) acbelLiff bOa e L.
Lemma 1.2. Let L be a GDS; then:

() Foranyae L,0,9a e L.
(2) Fora,be L a©belLiff ), =0,
(3 ForaGCbel a©Sb=0,0(0Oa).

Proof. (1) Let a e L. From the Lemma 1.1 we have a © 0, € L and
from (d4) 0, S a € L.

(2) From Lemma 1.1 we get a © b e L implies 0, = 0, = 0,g;,. On
the other hand let 0, = 0,. From (d4) 0, © 4,0, © b € L. From axiom (d3)
wegeta O b e L.

B)Lleta©be L Then0,=0,and 0, =a©O a = b S b. Now 0,
SBPOa)=bObhHOSbCa)=aOb n

Definition 1.3. Let Lbe aDS. If 0, © b € L, we definea @ b := a
©0,8bhiffa© b e L.

Proposition 1.3. Let L be a GDS. Then the following statements are true:

(1) The set G(a) = {b € L: 0, = 0,} is an Abelian group, with the
given operation.

(2) Ifforanya,b € L,0, = 0, then L is an Abelian group with the
given operation.

Proof. (1) From Lemma 1.2 we know that 0, = 0, iffa © b, 6O a € L.

Ifaeltena®0,=a0(0,90,) = a

Now we show the commutative law. Let b © a € L. Then 0, = 0, and
we cancalculate b Sa=50(0,04a) = (0,9 0,©9b)O 0,8 a) =
a© 0,0b)=aDb.
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The associative law: Let (a © b) @ ¢ € L; then a, b, ¢ € G(a). This
implies @@ b)) B c=@DPb)S(0,0¢) =[O 0,2 b] S0, )
=@ 0,010 0,0b) = (aDc)Db. Moreover, @@ b) B ¢) =
@@)Pb=c@aDPb=Db)yDPa=aD(cDbh).

Let b, d € G(a) and let there be two elements x;, x, € G(a) such that
dDx,=dDx, =b.Ifb=d®Dx, thenb =d & (0, © x,). From this
we get 0, © x; = d © b and moreover x; = b © d. On the other hand, x,
= b © d. This implies x; = x,. Thus G(a) is Abelian group.

(2) Suppose that for all a, b € L, 0, = 0,. Then from Lemma 1.2 we
havea© b,b© a e Landforeverya, b e L,Gla) = Gb)=L. m

Proposition 1.4. L is a GDS if it can be written as disjoint union of
Abelian groups. Conversely, every such disjoint union is a GDS.

Proof. Let L be a GDS. If G(a) = {b € L: 0, = 0,}, then G(a) is an
Abelian group and it is clear that 0, = 0, iff G(a) = G(b) and 0, # 0, iff
G(a) N G(b) = . For any ¢ € L, ¢ € G(c) and then

Lc U G

cel

On the other hand, for any a € L, G(a) C L. From this it follows that

L=U G

ael

Conversely, let {T,},.r be a family of disjoint Abelian groups. Let J
= Uger Ta- We can define a partial binary operation & as follows: a © b
e J iff there exists a« € I' deal with a, b € T, and moreover a ® b = a
@, b, where €, is the group operation on T,,. In the following we will denote
by the symbol a™ such an element from J thatif a € T,, then a™ e T, deal
with @ € a~ = 0,. Let a partial binary operation © on J be defined as
follows: a © b € J iff thereexist « € "witha, b e T,anda © b = a
@ b~. In the following we show that J is a GDS.

Ifa € J,thenthereis o € 'such thata € T, and 0, = a D a™ =
aBa=0,e9.

Ifa,be Tanda©S b e J, then there is o € I such that a, b € Ta.
Nowa© be Tanda© b = a D, b~. But T, is an Abelian group. Then
a eT,andbB,a e T, AndbDa =bSae T and0, = 0, = 0,.

Ifa© b ¢ J,thena © b~ ¢ T. This means that there are a, § & T
witha € T,, b € T, and T, N T = . From this it follows that b S a ¢
J.Weconcludethata © b e T iffa© a e 7.
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Leta© b e J. Thenthereexists a € 'witha © b =a B, b €
T,. Hence T, is an Abelian group; then a ©, (a B, )~ « T,. Thus

(a®,b7) D, (@ D, b)
= (@D, b7)Ba) Dy b
= (@ Dy s7) D b7) Do b
= (0, D, b7) D ab
=b" D, b
=0,
and
@@y b7) By @B b)) =0,
From the fact that 7, is an Abelian group we get
@D, b)) =a B, b
This implies
a©Q@oObh=aD,@®, b)) =a®(a Dyb)=@D,a)D,b=0b
which implies
a©@ob)y=>b

Leta© b, b©O c € T. Then there exist ¢, B € ['suchthat a © b €
T, and b © ¢ € Tg. From the definition of the partial binary operation ©
we geta, b € T,, b, c € Ty, and then T, N Ty # . This implies that T,
= Tp, and k ®, r = k D r for every k, r € T,,. From this it follows that a
Oc=a®,c €Ty, (@Sc)O (a©b) e T,, and moreover

@) @b

= @By ) Dy (aBy b7)”
=(a B, c) B, (a D, b)
= (a®, (a By b)) Dy ™
=((@aDya’) By c”
=phD, c”
=bOc

Thus 7 is a GDS. =
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Corollary 1.4.1. Let L be a GDS. The set L is an Abelian group iff for
everya, b € L, 0, = 0,

Proof. For every a, b € L, 0, = 0, = 0, implies L = G(a) = G(b).
Hence G{a) is an Abelian group.

If L is an Abelian group, then foreverya, b € L,a© b=a® b €
L. This implies that 0, = 0, = 0. =

Definition 1.4. Let L be a nonempty set with a partial binary operation
©. We call a subset E; of L an ordering set if the following conditions
are fulfilled:

(1) Ifq,0,8aeLand0,S a # q,thena € Eyiff 0, © a ¢ E,.
2) fa©b,be Eythena e E,

Lemma 1.5. Let L be a GDS with the partial ordering set Ey. Let H =
(a©b:a©b=bSa}l. Then E, N H = .

Proof. Let there be element @ € L suchthata # 0, and a € E, M H.
Ifa e H,thena = 0, © a. But if a € E,, from condition (1), a € Ej iff
0,9 a ¢ E,. So0, S a ¢ E, This contradicts a = 0, © a. Hence E, N
H=J. =

Proposition 1.6. Let L be a GDS. If there exist a partial ordering set Eq
and we write a < biff Da < biff b©Q aec EgorQa~biffa®© b =
b © a, then < is a partial ordering on L.

Proof. Let H be as Lemma 1.5. Then we know that H N E, = . Hence
aCbelLiff a©b bOal NE,# Jora®© b e H. Itis clear that 0,
e H and hence a ~ a.

leta<bandb<a. Ilfa© b e H,then b © a € H, so that a ~ b.

Let a < b, b < c. We want to show that a < ¢. From the definition for
the relation < there exist the following possibilities:

(1) a<band b <ec.
2) a~bandb ~ c.
(B) a~bandb <ec.
4) a<candc ~ b.

Because 0, = 05,0, = 0, then0, = 0., and c C q,a © ¢ € L.
(WIfa<bandb <c,thenbSa, c O b € E;. Hence L is a GDS; then

cOa)B(cOb)=bOa

From the definition of the set Ej it follows that ¢ © a € E,, which implies
that @ < c.
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)fa~bandb~c, thena©@b=bOaand cS b = b O c. Hence
OO (cOa)=aOb

and from this follows c O a = (cC L) S @O )= b )OO bOa) =
a © c. This implies a © ¢ € H. We conclude that a ~ c.

B)Ifa~bandb <c, thenaSbe Handc O b e E, Let ¢ ~ a.
Because (c ©a) O (cOb)=bOSa, wehave cO b= (cOa)S (b O a)
= (@S c)S (@a©b) = bOS c. Butthis means that b © ¢ € H. This
contradicts the assumption and hence a © ¢ # ¢ © a. Leta © ¢ € E;. Then
from the basic property we get

@b Wc)=cSb

From the definition of the set Ey, ¢ © b, a © ¢ € FE, implies a © b € Ej.
This contradicts the assumption. Hence ¢ © a € Ej and consequently a < c.
4)Leta<band b ~ c;thena © b = b © a. It is clear that (¢ © a)
SO =0Sa.lfcBSaec H, thenc© a = a6 c and we can calculate
ba=(cCa)S O =ua) kb =(0,2(Sa)OI0,
SO =(cObO(c®a) =aOb. This implies that b © a € H
NE,=C.Hence c ©a #a©c. Leta© ¢ e Ey; then

b bOa)=ac

From the definition of the set E, we get b © ¢ e E,. This contradicts the
assumption. Hence ¢ © a € E,. This impliesa <c. =

Now it is clear that if L is a GDS such that 0, = 0, for all a, b € L,
then L is an Abelian group. From this it follows that if we have L as a D-
poset (D set with the partial ordering) and we assume that for any a © b €
L, b © a e L, we get the ordering group. If L is a GDS and if there is an
element a € L such that G(a) N E; # J, then we can define partial ordering
on the difference set L.
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